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Abstract
A relationship between two old mathematical subjects is observed: the
theory of hypergeometric functions and the separability in classical mechanics.
Separable potential perturbations of integrable billiard systems and the Jacobi
problem for geodesics on an ellipsoid are expressed through the Appell
hypergeometric functions F4 of two variables. Even when the number of
degrees of freedom increases, if an ellipsoid is symmetric, the number of
variables in the hypergeometric functions does not increase. Wider classes
of separable potentials are given by the obtained new formulae automatically.

PACS numbers: 02.30.Gp, 45.50.-j

1. Introduction

Appell introduced four families of hypergeometric functions of two variables in the 1880s.
Soon, he applied them in a solution of the Tisserand problem in the celestial mechanics.
The Appell functions have several other applications, for example in the theory of algebraic
equations, algebraic surfaces. . . . The aim of this paper is to point out the relationship between
the Appell functionsF4 and another subject from classical mechanics—separability of variables
in the Hamilton–Jacobi equations.

The equation

λVxy + 3(yVx − xVy) + (y2 − x2)Vxy + xy(Vxx − Vyy) = 0 (1)

appeared in Kozlov’s paper [1] as a condition on the function V = V (x, y) to be an integrable
perturbation of certain type for billiard systems inside an ellipse

x2

A
+
y2

B
= 1 λ = A− B. (2)

This equation is a special case of the Bertrand–Darboux equation [2–4]

(Vyy − Vxx)(−2axy − b′y − bx + c1) + 2Vxy(ay
2 − ax2 + by − b′x + c − c′)

+Vx(6ay + 3b) + Vy(−6ax − 3b′) = 0. (3)
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It corresponds to the choice a = −1/2, b = b′ = c1 = 0, c − c′ = −λ/2. The Bertrand–
Darboux equation represents the necessary and sufficient condition for a natural mechanical
system with two degrees of freedom

H = 1
2 (p

2
x + p2

y) + V (x, y)

to be separable in elliptical coordinates or some of their degenerations.
Solutions of equation (1) in the form of the Laurent polynomials in x, y were described

in [5]. The starting observation of this paper, that such solutions are simply related to the well
known hypergeometric functions of the Appell type, is presented in section 3. Such a relation
automatically gives a wider class of solutions of equation (1)—new potentials are obtained
for non-integer parameters. But what is more important is that it shows the existence of a
connection between the separability of classical systems on the one hand, and the theory of
hypergeometric functions on the other. Basic references for the Appell functions are [6–8].
Further, in section 3, similar formulae for potential perturbations for the Jacobi problem for
geodesics on an ellipsoid from [9] and for billiard systems on surfaces with constant curvature
from [10], are given.

In the case of more than two degrees of freedom, the natural generalization for equations (1)
and (3) is the system (4). In [11], considering billiard systems inside an ellipsoid in
R3, the system (4) is derived for the case of three degrees of freedom, and its Laurent
polynomial solutions are given. In section 4, we express these solutions through the
hypergeometric functions for the case of the symmetric ellipsiod only. We again obtain the
Appell hypergeometric functions of two variables.

The system

(ai − ar)−1(x2
i Vrs − xixrVis) = (ai − as)−1(x2

i Vrs − xixsVir ) i �= r �= s �= i
(ai − ar)−1xixr(Vii − Vrr)−

∑
j �=i,r
(ai − aj )−1xixjVjr

+Vir

[ ∑
j �=i,r
(ai − aj )−1x2

j + (ar − ai)−1(x2
i − x2

r )

]
+ Vir

+3(ai − ar)−1(xrVi − xiVr) = 0 i �= r

(4)

where Vi = ∂V/∂xi , of (n − 1)
(
n

2

)
equations was formulated in [12] for an arbitrary number

of degrees of freedom n. In [12] the generalization of the Bertrand–Darboux theorem is
proved. According to that theorem, the solutions of the system (4) are potentials separable in
generalized elliptic coordinates (see the theorem after lemma 2, below).

Deeper explanation of the connection between the separability in elliptic coordinates and
the Appell hypergeometric functions is not yet known.

2. Basic notation

The function F4 is one of the four hypergeometric functions in two variables introduced by
Appell [7, 8] and defined as a series

F4(a, b, c, d; x, y) =
∑ (a)m+n(b)m+n

(c)m(d)n

xm

m!

yn

n!

where (a)n is the standard Pochhammer symbol:

(a)n = �(a + n)

�(a)
= a(a + 1) . . . (a + n− 1)

(a)0 = 1.
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(For example m! = (1)m.)
The series F4 is convergent for

√
x +

√
y � 1. The functions F4 can be analytically

continued to the solutions of the equations

x(1 − x)∂
2F

∂x2
− y2 ∂

2F

∂y2
− 2xy

∂2F

∂x∂y
+ [c − (a + b + 1)x]

∂F

∂x

−(a + b + 1)y
∂F

∂y
− abF = 0

y(1 − y)∂
2F

∂y2
− x2 ∂

2F

∂x2
− 2xy

∂2F

∂x∂y
+ [c′ − (a + b + 1)y]

∂F

∂y

−(a + b + 1)x
∂F

∂x
− abF = 0.

3. The separable systems with two degrees of freedom

3.1. Billiard inside an ellipse

Following [1, 5] we will start with a billiard system which describes a particle moving freely
within an ellipse (2). At the boundary we assume elastic reflections with equal impact and
reflection angles. This system is completely integrable and it has an additional integral

K1 = ẋ2

A
+
ẏ2

B
− (ẋy − ẏx)2

AB
.

We are interested in potential perturbation V = V (x, y) such that the perturbed system has an
integral K̃1 of the form

K̃1 = K1 + k1(x, y)

where k1 = k1(x, y) depends only on coordinates. This specific condition leads to equation (1)
on V (see [1]).

In [5] the Laurent polynomial solutions of equation (1) were given. The basic set of
solutions consists of the functions

Vk =
k−2∑
i=0

(−1)i
k−i−1∑
s=1

Ukis(x, y, λ) + y−2k k ∈ N

Wk =
k−2∑
i=0

k−i−1∑
s=1

(−1)sUkis(y, x, λ) + x−2k k ∈ N

where

Ukis =
(
s + i − 1

i

)
[1 − (k − i)][2 − (k − i)] . . . [s − (k − i)]

λs+i s!
x2sy−2k+2i .

Now, we rewrite the above formulae:

Vk =
k−2∑
i=0

(−1)i
k−i−1∑
s=1

Ukis(x, y, λ) + y−2k k ∈ N

=
k−2∑
i=0

(−1)i
k−i−1∑
s=1

�(s + i)�(s + i − k + 1)

�(i + 1)�(s)�(i − k + 1)�(s + 1)

x2sy2(i−k)

λs+i
+ y−2k

= 1

y2k

(
(1 − k)

k−2∑
i=0

k−i−1∑
s=1

(1)s+i−1(2 − k)s+i−1

i!(1)s−1s!(1 − k)i
x2s

λs

(−y2)i

λi
+ 1

)
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= 1

y2k

(
(1 − k)x

2

λ

k−2∑
i=0

k−i−2∑
s=0

(1)s+i (2 − k)s+i
(2)s(1 − k)i

(x2)s

s!λs
(−y2)i

i!λi
+ 1

)

= 1

ỹkλk
((1 − k)x̃F4(1; 2 − k; 2, 1 − k, x̃, −ỹ) + 1)

where x̃ = x2/λ, ỹ = −y2/λ, and F4 is the Appell function. We have just obtained a simple
formula which expresses the potentials Vk , from [5], for k ∈ N through the Appell functions.
(The scalar coefficient λ−k is not essential and we omit it henceforth.) We can use this formula
to extend the family of solutions of equation (1) out of the set of the Laurent polynomials. We
obtain new solutions of equation (1) if we let the parameter k in the last formula be arbitrary,
not only a natural number.

Let V (x, y) = ∑
anmx

nym. Then equation (1) reduces to

λnman,m = (n +m)(man−2,m − nan,m−2). (5)

If one of the indices, for example the first one, belongs toZ, then V does not have essential
singularities. Put a0,−2γ = 1, where γ is not necessarily an integer.

If we define

a2s + 2︸ ︷︷ ︸
n

,2i − 2γ︸ ︷︷ ︸
m

= (−1)i(1)s+i (2 − γ )s+i
(2)s(1 − γ )is!i!λs+i (6)

it can easily be seen that (6) is a solution of equation (5). So, let us denote

Vγ = ỹ−γ ((1 − γ )x̃F4(1, 2 − γ, 2, 1 − γ, x̃, ỹ) + 1). (7)

Then we have the following theorem.

Theorem 1. Every function Vγ given with (7) and γ ∈ C is a solution of equation (1).

Theorem 1 gives new potentials for non-integer γ .
Mechanical interpretation: With γ ∈ R− and the coefficient multiplying Vγ positive, we

have a potential barrier along the x-axis. We can consider billiard motion in the upper half-
plane. Then we can assume that a cut is done along the negative part of the y-axis, in order to
get a unique-valued real function as a potential.

Solutions of equation (1) are also connected with interesting geometric subjects. We
briefly mention some of them at the end of section 5.

3.2. The Jacobi problem for geodesics on an ellipsoid

The Jacobi problem for the geodesics on an ellipsoid

x2

A
+
y2

B
+
z2

C
= 1

has an additional integral

K1 =
(
x2

A2
+
y2

B2
+
z2

C2

) (
ẋ2

A
+
ẏ2

B
+
ż2

C

)
.

Potential perturbations V = V (x, y, z) such that perturbed systems have integrals of the form

K̃1 = K1 + k(x, y, z)
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satisfy the following system (see [9]):(
x2

A2
+
y2

B2
+
z2

C2

)
Vxy
A− B
AB

− 3
y

B2

Vx

A
+ 3
x

A2

Vy

B
+

(
x2

A3
− y2

B3

)
Vxy

+
xy

AB

(
Vyy

A
− Vxx
B

)
+
zx

CA2
Vzy − zy

CB2
Vzx = 0(

x2

A2
+
y2

B2
+
z2

C2

)
Vyz
B − C
BC

− 3
z

C2

Vy

B
+ 3
y

B2

Vz

C
+

(
y2

B3
− z2

C3

)
Vyz

+
yz

BC

(
Vzz

B
− Vyy
C

)
+
xy

AB2
Vxz − xz

AC2
Vxy = 0(

x2

A2
+
y2

B2
+
z2

C2

)
Vzx
C − A
AC

− 3
x

A2

Vz

C
+ 3

z

C2

Vx

A
+

(
z2

C3
− x2

A3

)
Vzx

+
xz

AC

(
Vxx

C
− Vzz
A

)
+
zy

BC2
Vxy − yx

BA2
Vyz = 0.

(8)

System (8) replaces equation (1) in this problem. Solutions of the system in the Laurent
polynomial form were found in [9]. We can transform them in the following way:

Vl0(x, y, z) =
∑

0�k�s,k+c�l0
(−1)s

(
s + k − 1

k

)
(x2)−l0+k(y2)s(z2)l0−(k+s)−1

×C
s+k(C − A)s(C − B)k2k+s(−l0 + 1) . . . (−l0 + (k + s))

BkAs(B − A)k+s2s2ks!(−l0 + 1) . . . (−l0 + k)
(z2)l0−(k+s)−1

=
∑ (s + k − 1)!(−l0 + 1)(−l0 + 2)s+k−1(z

2)l0

k!(s − 1)!s!(−l0 + 1)k(x2)l0

×
[
x2C(A− C)
z2(B − A)A

]s [
y2C(C − B)
z2(B − A)B

]k

= (−l0 + 1)

(
z2

x2

)l0 ∑ (1)s+k−1(−l0 + 2)s+k−1

(2)s−1(−l0 + 1)k
x̂s ŷk

= (−l0 + 1)

(
z2

x2

)l0
F4(1; −l0 + 2; 2,−l0 + 1, x̂, ŷ)

where

x2C(A− C)
z2(B − A)A = x̂ y2C(C − B)

z2(B − A)B = ŷ.
In the above formulae l0 is an integer. We have the following straightforward generalization.

Theorem 2. For every γ ∈ C the function

Vγ = (−γ + 1)

(
z2

x2

)γ
F4(1; −γ + 2; 2,−γ + 1, x̂, ŷ)

is a solution of system (8).

3.3. Billiard systems on the constant-curvature surfaces

Potential perturbations of billiard systems on constant-curvature surfaces were analysed in [10].
Following the notation of [10], let the billiardDS be a subset of the surface(S, of the curvature
S = +1 or −1, bounded with the quadricQS , where

(+ = {r = (x, y, z) ∈ R3 | 〈r, r〉+ = 1} 〈r1, r2〉+ = x1y1 + x2y2 + x3y3
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(− = {r = (x, y, z) ∈ R3 | 〈r, r〉− = −1, z > 0} 〈r1, r2〉− = x1y1 + x2y2 − x3y3

QS = (S ∩ {r ∈ R3 | 〈Qr, r〉s = 0} �= ∅ Q = diag

(
1

A
,

1

B
,

1

C

)
.

Then the billiard system has the integral

K = (ẋy − ẏx)2
AB

+ S
(ẋz− żx)2
AC

+ S
(ży − ẏz)2
BC

.

As before, we are looking for potentials V = V (x, y, z) such that the perturbed system has an
integral of the form

K̃ = K + k(x, y, z).

In this case the condition is given by the system [10]:

3CyVx − 3CxVy + Vxy(C(y
2 − x2) +Kz2(B − A))

+CxyVxx − CxyVyy + AzyVzx − BzxVzy = 0
3BzVx −K3BxVz + Vxz(B(z

2 −Kx2) +Ky2(C − A))
+BzxVxx −KBzxVzz + AzyVxy −KCyxVyz = 0

3AzVy −K3AyVz + Vyz(A(z
2 −Ky2) +Kx2(C − B))

+AzyVyy −KAzyVzz + BzxVxy −KCxyVxz = 0.

(9)

Starting from the solutions from [10]

Vl0 = 1

z2l0

∑
0�k�l0−1

0�m�l0−k−1

am,kx
2my2l0−2−2k−2mz2k

where

am,k = Kl0−k−1

(
C − B
C − A

)m (
l0 − k − 1

m

)(
k +m− 1

k

) (
A− B
C − A

)k

we come to the following theorem.

Theorem 3. The functions

Vγ = ŷ−γ ((1 − γ )x2F4(1, 2 − γ, 2, 1 − γ, x̂, ŷ) + 1)

where

x2(B − C)
y2(C − A) = x̂ K

z2(A− B)
y2(C − A) = ŷ

are solutions of the system (9), for γ ∈ C.

4. More than two degrees of freedom

In the previous section, we have seen that integrable perturbations of separable systems with
two degrees of freedom led to the hypergeometric functions of two variables. Now, one
can expect that in a case of more than two degrees of freedom, the integrable potentials are
connected with hypergeometric functions again, but with more than two variables. We will
consider the billiard system inside an ellipsoid in R3, and we will see that the corresponding
potential perturbations are still related to the Appell functionF4 of two variables, if the ellipsoid
is symmetric.
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4.1. Billiards inside a symmetric ellipsoid in R3

Let us consider the billiard system within an ellipsoid in R3:
x2

A
+
y2

B
+
z2

C
= 1.

The potential perturbations W = W(x, y, z) of such systems in the form of Laurent
polynomials were calculated in [11]. They satisfy the system (4) for n = 3:

Wl0 = 1

z2l0

∑
0�m+n+k<l0

(l0 − k − 1)!(−1)n

m!n!(l0 − 1 − k −m− n)!
P km,n(β, γ )

γ m+kβn+k
x2my2nz2k (10)

where

P km,n(β, γ ) =
k∑
i=0

(
m + k − 1 − i

k − i
)

·
(
n + i − 1

i

)
(−1)iβk−iγ i

and β = B − C, γ = C − A.
The symmetric case A = B corresponds to the condition γ + β = 0.

Lemma 1. If γ + β = 0 then we have

P km,n(β,−β) =
(
k +m + n− 1

k

)
βk. (11)

Proof.

P km,n(β,−β) = βk
k∑
i=0

(
m + k − i − 1

k − i
)(
n + i − 1

i

)

= βk
k∑
i=0

(
k − i +m− 1

k − i
)(
i + n− 1

i

)

=
(
k +m + n− 1

k

)
βk.

�
By putting (11) into (10) we get, using γ = −β,

Wl0 = C 1

ẑl0

l0∑
m+n+k=1

(l0 − 1) . . . (l0 −m− n− k)(m + n + k − 1)!(−1)n

(l0 − 1) . . . (l0 − k)(m + n− 1)!

x̂m

m!

ŷn

n!

ẑk

k!

= C

(ẑ)l0

[ l0∑
m+n+k=1

(−l0 + 2) . . . (−l0 +m + n + k)(1)m+n+k−1

(−l0 + 1) . . . (−l0 + k)(−1)−m(1)m+n−1

x̂m

m!

ŷn

n!

ẑk

k!
+ 1

]

where x̂ = x2

γ
, ŷ = y2

β
, ẑ = z2

γ
.

Wl0 = C · ẑ−l0
( l0∑
m+n+k=1

(1)m+n+k−1(2 − l0)m+n+k−1(−1)m

(1)m+n−1(1 − l0)k
x̂m

m!

ŷn

n!

ẑk

k!
+ 1

)

= C · ẑ−l0
( l0∑
m+n+k=1

(1)m+n+k−1(2 − l0)m+n+k−1(−1)m(m + n)!

(2)m+n−1(1 − l0)k(m + n− 1)!

x̂m

m!

ŷn

n!

ẑk

k!
+ 1

)

= C · ẑ−l0
( l0∑
m+n+k=1

(1)m+n+k−1(2 − l0)m+n+k−1

(2)m+n−1(1 − l0)k
(−x̂ + ŷ)m+n

(m + n− 1)!

ẑk

k!
+ 1

)

= C · ẑ−l0
[
(−x̂ + ŷ)

∑
0�s+k<l0

(1)s+k(2 − l0)s+k
(2)s(1 − l0)k

(−x̂ + ŷ)s

s!

ẑk

k!
+ 1

]

where C = (1 − l0)γ−l0 , m + n− 1 = s.
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Theorem 4. Generalizations of the integrable potential perturbations from [11] in the
symmetric case are given by

Wl0 = (ẑ)−l0 [(−x̂ + ŷ)F4(1, 2 − l0; 2, 1 − l0; −x̂ + ŷ, ẑ) + 1],

where l0 ∈ C.

4.2. The case of general dimension

We consider the billiard system in Rn within an ellipsoid

x2
1

a1
+ · · · +

x2
n

an
= 1.

For n � 3 we start from a separable system with n integrals K1, . . . , Kn which are mutually
in involution, where Kn = H is the Hamiltonian and

Ki =
∑
j �=i

(ẋixj − ẋj xi)2
ai − aj i = 1, . . . , n− 1. (12)

Then we are interested in potential perturbations k1, . . . , kn, where ki = ki(x1, . . . , xn) depend
only on coordinates and V = kn. The conditions

{K̃n, K̃i} = 0 i = 1, . . . , n− 1 (13)

where

K̃i = Ki + ki i = 1, . . . , n (14)

are equivalent to the system (4). A nontrivial (and possibly unexpected) fact is that the new
integrals commute between themselves.

Lemma 2. From (12) and (13), it follows that

{K̃j , K̃i} = 0 i, j = 1, . . . , n− 1.

This was checked by direct calculation for n = 3 in [11]. We will give the proof in
the general case after the formulation of the generalized Bertrand–Darboux theorem proved
in [12].

Generalized Bertrand–Darboux theorem [12]. For a natural Hamiltonian system with a
Hamiltonian

H = 1
2

n∑
i=1

p2
i + V (x)

the following three conditions are equivalent:

(a) It has n− 1 global, independent, involutive integrals of the form (14).
(b) The potential V satisfies the system (4).
(c) The Hamilton–Jacobi equation for H is separable in generalized elliptic coordinates
(u1, . . . , un) given by

1 +
n∑
i=1

xi

z− ai =
∏n
j=1(z− uj )∏n
k=1(z− αk) .

Proof of lemma 2. The conditions (13) for the functions defined by (12), (14) lead to the
system (4). So the condition (b) of the last theorem is satisfied. The chain of implications
from (b) via (c) to (a) from that theorem ends the proof. �

However, the perturbations in the general case are not connected with the Appell
hypergeometric functions, except in the degenerate completely symmetric case a1 = · · · =
an−1, which is an obvious generalization of theorem 4.



The Appell functions and separable systems 2221

5. Conclusion

If we denote in (10) −β/γ by q, then theorem 4 shows that the potentials Wl0 are certain
deformations of the (Appell) hypergeometric functions. The analysis of this deformation
and comparison to the known q-deformations and multivariable generalizations of the
hypergeometric functions [6] remains as an interesting problem.

Potential perturbations of classical nonholonomic rigid-body problems are described
in [13]. It seems that they are also connected with the hypergeometric functions.

From the geometric point of view, it is well known that billiard systems within an ellipse are
closely related to the Poncelet and the Cayley theorems [14–16]. So, the Appell hypergeometric
functions define natural deformations of these classical projective geometry settings.

Geometry of separable systems and their relationship to bi-Hamiltonian systems
is extensively studied by several authors. Let as mention Benenti, Magri and their
collaborators [17–19]. In that sense, equation (1) can be considered as a condition for the
second structure to be the Poisson bracket.
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